3[(x-2)(x-2)]+4(x-2)=252

Simple and best practice solution for 3[(x-2)(x-2)]+4(x-2)=252 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3[(x-2)(x-2)]+4(x-2)=252 equation:


Simplifying
3[(x + -2)(x + -2)] + 4(x + -2) = 252

Reorder the terms:
3[(-2 + x)(x + -2)] + 4(x + -2) = 252

Reorder the terms:
3[(-2 + x)(-2 + x)] + 4(x + -2) = 252

Multiply (-2 + x) * (-2 + x)
3[(-2(-2 + x) + x(-2 + x))] + 4(x + -2) = 252
3[((-2 * -2 + x * -2) + x(-2 + x))] + 4(x + -2) = 252
3[((4 + -2x) + x(-2 + x))] + 4(x + -2) = 252
3[(4 + -2x + (-2 * x + x * x))] + 4(x + -2) = 252
3[(4 + -2x + (-2x + x2))] + 4(x + -2) = 252

Combine like terms: -2x + -2x = -4x
3[(4 + -4x + x2)] + 4(x + -2) = 252
[4 * 3 + -4x * 3 + x2 * 3] + 4(x + -2) = 252
[12 + -12x + 3x2] + 4(x + -2) = 252

Reorder the terms:
12 + -12x + 3x2 + 4(-2 + x) = 252
12 + -12x + 3x2 + (-2 * 4 + x * 4) = 252
12 + -12x + 3x2 + (-8 + 4x) = 252

Reorder the terms:
12 + -8 + -12x + 4x + 3x2 = 252

Combine like terms: 12 + -8 = 4
4 + -12x + 4x + 3x2 = 252

Combine like terms: -12x + 4x = -8x
4 + -8x + 3x2 = 252

Solving
4 + -8x + 3x2 = 252

Solving for variable 'x'.

Reorder the terms:
4 + -252 + -8x + 3x2 = 252 + -252

Combine like terms: 4 + -252 = -248
-248 + -8x + 3x2 = 252 + -252

Combine like terms: 252 + -252 = 0
-248 + -8x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-82.66666667 + -2.666666667x + x2 = 0

Move the constant term to the right:

Add '82.66666667' to each side of the equation.
-82.66666667 + -2.666666667x + 82.66666667 + x2 = 0 + 82.66666667

Reorder the terms:
-82.66666667 + 82.66666667 + -2.666666667x + x2 = 0 + 82.66666667

Combine like terms: -82.66666667 + 82.66666667 = 0.00000000
0.00000000 + -2.666666667x + x2 = 0 + 82.66666667
-2.666666667x + x2 = 0 + 82.66666667

Combine like terms: 0 + 82.66666667 = 82.66666667
-2.666666667x + x2 = 82.66666667

The x term is -2.666666667x.  Take half its coefficient (-1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
-2.666666667x + 1.777777780 + x2 = 82.66666667 + 1.777777780

Reorder the terms:
1.777777780 + -2.666666667x + x2 = 82.66666667 + 1.777777780

Combine like terms: 82.66666667 + 1.777777780 = 84.44444445
1.777777780 + -2.666666667x + x2 = 84.44444445

Factor a perfect square on the left side:
(x + -1.333333334)(x + -1.333333334) = 84.44444445

Calculate the square root of the right side: 9.189365835

Break this problem into two subproblems by setting 
(x + -1.333333334) equal to 9.189365835 and -9.189365835.

Subproblem 1

x + -1.333333334 = 9.189365835 Simplifying x + -1.333333334 = 9.189365835 Reorder the terms: -1.333333334 + x = 9.189365835 Solving -1.333333334 + x = 9.189365835 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.333333334' to each side of the equation. -1.333333334 + 1.333333334 + x = 9.189365835 + 1.333333334 Combine like terms: -1.333333334 + 1.333333334 = 0.000000000 0.000000000 + x = 9.189365835 + 1.333333334 x = 9.189365835 + 1.333333334 Combine like terms: 9.189365835 + 1.333333334 = 10.522699169 x = 10.522699169 Simplifying x = 10.522699169

Subproblem 2

x + -1.333333334 = -9.189365835 Simplifying x + -1.333333334 = -9.189365835 Reorder the terms: -1.333333334 + x = -9.189365835 Solving -1.333333334 + x = -9.189365835 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.333333334' to each side of the equation. -1.333333334 + 1.333333334 + x = -9.189365835 + 1.333333334 Combine like terms: -1.333333334 + 1.333333334 = 0.000000000 0.000000000 + x = -9.189365835 + 1.333333334 x = -9.189365835 + 1.333333334 Combine like terms: -9.189365835 + 1.333333334 = -7.856032501 x = -7.856032501 Simplifying x = -7.856032501

Solution

The solution to the problem is based on the solutions from the subproblems. x = {10.522699169, -7.856032501}

See similar equations:

| -6+2(8n+7)=-4(3n+9)+1 | | 39=1.84x-212 | | 3x-23=22 | | 4.25x-9=7/2x+18 | | 9(0)+4y=-20 | | 7(x+1)+6=3x+4(2+x) | | 39=-1.84x+212 | | 8y-16y=-28-36 | | 3/4*20=5/6*x | | 9(-1)+4y=-20 | | 2t+21=3t+5 | | 4y-1+y+48=7y+50-5y | | 19+6x+2x= | | (1/4)u+(5/4)=-(2/3)u+(5/6) | | -7/8t-4/3u-5/4t+11/6u | | 6x+5+36=10x-7 | | m=2(1)+3 | | 5x+7y=24 | | 230+.25x=440 | | 5y+25=10y+5 | | 3*x^3-27*x=0 | | 6+2y+5y+4y+17+6y= | | 150+2x=25+3x | | m=2(0)+3 | | 4w-2(1-w)=-3 | | 3(2+-5)-4(5)=-5+16 | | 39=1.84x+212 | | 49x^2-28x+16= | | m=3n+98 | | 40+14w=2(4w-13) | | 3y-2+y+50=5y+50-3y | | -0.3(n-1.5)=-2.3(n+0.5) |

Equations solver categories